
AD-A039 836 

UNCLASSIFIED 

CATHOLIC UNIV OF AMERICA  WASHINGTON D C F/G 20/11 
MEAN FIELD VARIATIONS IN RANDOM MEDIA.(U) 
APR 77  J J MCCOY DAHC04-75-G-0069 

AR0-1233't.3-E NL 



• -• . om .*-.-••-  "w«"«"i 

: 

$ 

k 
• 

V 

L ---     - -               --      "• W-   -  •--•-           .— .;..,- -...,— ,         • 



r 
SECURITY CLASSIFICATION  OF THIS PACE (Whan Data Entered) 

REPORT DOCUMENTATION PAGE 
O^0-/^</.3-p: 

<P^ ijb. >^DAIlCO4-75-G-Q069/ DAAG29-76-G-0084 
.4^ TITLE (and Subtitle) 

Q   — ^tean Fi 

cot 

co 

I. REPORT NUMBER !. 30yT*CCl•.! 

eld Variations in Random Media 

* 1cCoy 

. PERFORMING ORGANIZATION NAME AND ADDRESS 

The Catholic University of America 
Washington, Ü.C.    20064 

It.   CONTROLLING OFFICE NAME AND ADDRESS 

U. S. Army Research Office 
Post Office Box 12211 
Research Triangle Park, KG 27709*" 

QLi 

a 

Q- 

8 
lri 

.14.    MONITORING- «WJENCY NAME. a  AODRESSfi/ cltlterent from Controlling Oltlce) 

S3-B-R0 
T R| °"T|p^  tTjTpywtt^l .1./, ^„..j^!^:  

READ INSTRUCTIONS 
BEFORE COMPLETING KORM 

3.    RECIPIENT'S CATALOG NUMBER 

S.    TYPE OF  REPORT o.  PERIOD COVEREO 

Final Report  1/1/75-12/31/76 
6.    PERFORMING ORG.   REPORT NUMBER 

8.  J^NTRACT OR GRANT NUMBER(«J 

10.    PROGRAM ELEMENT. PROJECT,  TASK 
AREA A WORK UNIT NUMBERS 

/ /    1 Apr*» *77 
1.3,  ttJUMULIl Ul1 FUBEI 

15.    SECURITY-etASS^ 

UnclassifjNrt- 
15a.    DECLASSIFICATION/DOWNGRADING 

SCHEDULE 
»A 

16.    DISTRIBUT|b{LJl»*TE1»eW 

Approved for public release; distribution unlimited. 

17.    DISTRIBUTION STATEMENT (ol the abstract entered In Block 10, it dltlarent horn Repon 

D D C 
qpSEtmOEE 

MAY 24 19TT 

"; LUlESElHrDTSlB 

5"- 
3i 

KA cy D 

18.    SUPPLEMENTARY NOTES 

The findings in this report are not to be construed as an official 
Department of the Army position, unless so designated by other authorized 
documents. 

19.    KEY WORDS (Continue on reverse aide it neceaaary and identity by block number) 

Composite Materials, Statistical Continuum Theory, Random Media 

aO". - ABSTRACT (Continue on reverse aide It necessary and identity by block number) 

A brief review is provided of research to incorporate more detailed informa- 
tion of substructure geometry, when compared to volume fraction information, in 
bounds on the effective property measures of composite materials. This review 
motivates i^ome of the work carried out during the tenure of the grants under 
discussionT"*In addition, we discuss., the need for a coherence function formu- 
lation of stress waves in randomly heterogeneous materials, and some steps 
taken toward developing this formulation. i 

L... w i 
DD    I  JAN"3   1473 EDITION OF   1  NOV 6S IS OBSOLETE 

SECURITY CLASSIFICATION OF  THIS PAGE fK7i*n Data (Whin Data Unterart) 

•••••••••••••••••• 



Mean Field Variations in Random Media 

Final Report 

John J. McCoy 

1 April, 1977 

U.S. Army Research Office 

Grants No.   DA11C04 75 G 0069 

DAAG29 76 G 0084 

The Catholic University of America 

Washington, D.C.  20064 

MtnSM IV 

i«           MI MI*  a 
KIHMND                           G 
H<T!>nUTIM   ,  „    .,, 

-,, 

'*>•.:• •.••rzs/mnjiiun mm 

»JC ut/w »taik 

bl 

Approved For Public Release 

Distribution Unlimited 

D D C 
11 

Ä KAY 34 197T 

D 

rV 

\ « 



Summary of Research 

An appreciation of the research accomplished, with ARO support, during the 

past two years requires that it be viewed in the context of the longer range re- 

search efforts of the principal investigator and his colleagues. These efforts 

have been supported by ARO for the past five years under the broad title, "Mean 

Field Variations in Random Media." Perhaps an equally applicable generic title 

for these efforts would be, "Macroscale Response of Materials with Disordered 

Microstructures." The Army's interest in this research is clearly related to its 

interest in the development of models suitable for predicting the response of 

composite materials. 

It is convenient in considering our research to differentiate between 

problems in which inertia may be neglected from those in which inertia plays a 

significant role. This delineation is convenient for several reasons.  For 

example, in a statical problem the length scale on which the mean field, or 

macroscale, response measures vary; i.e. the L scale; is usually determined by 

the geometry of the specimen of interest.  In a dynamical problem, on the other 

hand, this length scale is more properly identified with the frequency of the 

excitation mechanism. Further, in a statical problem, two length scales -- that 

on which the mean field response measures vary; i.e. the L scale; and that on 

which the random variations in property field measures vary; i.e. the &  scale — 

are often sufficient to describe the experiment.  In a dynamical problem, a third 

length scale — the propagation range — enters along with the mean field wave- 

length and the correlation lengths defined on the disordered microstructure. 

Thus, as might be expected, the nature of the most interesting experiments fre- 

quently changes when inertia effects become important. 

It is intuitive, and has been rigorously demonstrated (1,2), that a proper 

theory for predicting the mean field response, in the absence of inertia effects, 

is an "effective modulus" theory, provided -t/h  a 1.  It has also been demonstrated 

that gradient theories, in general, do not represent valid generalizations of the 

"effective modulus" theory as one moves away from the indicated limit (3).  Ac- 

cepting the validity of the "effective modulus" theory for the more common statical 

problems, the prediction problem that remains is to relate the effective moduli to 

suitable descriptors of the microstructure. This problem has long been of interest 

to the Army Research Office and a brief history of one approach to solving it will 

put some of our own research into perspective. 
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A rigorous theory for predicting the effective properties of composite 

materials began with the demonstrations that (i) exact prediction models based 

on limited information of the constituent phases; e.g. volume fraction information; 

cannot exist (4), and (ii) exact bounds on the desired effective property measures 

based on limited information of the constituent phases can usually be obtained (5). 

The first demonstration emphasized a fundamental fallacy in the motivations of a line 

of study that was quite popular among early researchers. The motivation was to 

improve the "law of mixtures" for estimating the effective property measure, often 

by performing large numbers of experiments and by choosing an improved law so as 

to fit the obtained data points. The second demonstration emphasized that a way 

does exist for construction ''well-posed" prediction mrdels. That is, a way exists 

for us to ask the desired questions such that a single and unique answer is ob- 

tained.  It may seem unfortunate that the manner of asking the desired question 

cannot actually predict the desired value but ..'his is due to the nature of the 

underlying physics.  Indeed it is very fortunate, and in a sense surprising, that 

we can say anything exactly about the desired value based on such limited informa- 

tion as volume fraction information. 

Two further results of considerable impact wer«, the development of property 

measure bounds that are referred to as Hashin-Shtrikman bounds (6), and the demon- 

stration that these bounds are "best" bounds based on volume fraction information 

(6).  The improvement, i.e. narrowing, of the Hashin-Sht/ikman bounds over the 

previously reported bounds based on volume fraction information was not insignificant. 

Of more far-reaching effect, however, was the demonstration that the bounds were 

"best" in the sense that all points within the bounds corresponded to a real material. 

Thus, any improvement of the Hashin-Shtrikman bounds could only be achieved by the 

introduction of information of the composite substructure that is more refined than 

that contained in volume fraction information. The significance of the Hashin- 

Shtrikman bounds was slow in achieving the general, if not universal, acceptance 

that they are now afforded. 

Since the Hashin-Shtrikman bounds are frequently too far separated to serve 

as prediction models, the problem then turned to how to incorporate the "more 

refined" geometric information required to obtain narrower bounds. One solution 

to this problem was provided in a procedure proposed by Beran (7), which leads to 

a hierarchy of bounds with succeeding sets in the hierarchy containing the more 

refined geometric information in the form of higher order statistical moments.  For 



example, bounds based on three-point moments have been presented by Beran (7), 

by Brown (8), by Beran and Molyneux (9), and by McCoy (10,11).  Bounds based on 

three-, four-, and five-point moments have been given by blsaycd (12). 

While the theoretical significance of all of these more refined bounds ap- 

pears clear, the practical significance is hindered by the complexity of the 

information required by them and by our unfamiliarity in dealing with statistical 

moments involving more than two points.  In order to circumvent this difficulty, 

Miller (13,14) proposed to model the microstructure geometry and in so doing to 

obtain analytic expression for the multi-point statistical moments expressed in 

terms of a limited number of model parameters. The symmetric cell material pro- 

mz^iz.:;^;. ~ ».."-.::— -P9 5£.d.:..bv.1^1 k9I.JPT.9y9.4-.?j^ks-SUsunjosj^fryixfuL.3KHteLi'.-ABBLifid".tmtfaaathrefcrpiaiax;:::;:-:; 
moment bounds, the symmetric cell material assumption results in bounds that are 

completely prescribed by a single model parameter, in addition to volume fraction 

information.  Further, Miller was able to provide a simple geometric significance 

to this parameter; it is a shape factor.  In so doing, he was able to actually 

draw a relationship between specified values of the shape factor and the qualita- 

tive concept that these values describe. Finally, Miller demonstrated that for a 

specified value of his shape factor, the bounds containing this information repre- 

sented a distinct narrowing of the Hashin-Shtrikman bounds. 

Llsayed (12) next applied the symmetric cell material assumption to his bounds 

that are based on three-, four-, and five-point statistical moments. The reduced 

bounds arc prescribed by three shape factors (one from each of the multi-point 

moments) and two packing parameters (one from each of the four-, and five-point 

moments).  In a further study (this one accomplished with ARO support under an 

earlier grant), Elsayed and McCoy (15) numerically studied equivalent bounds con- 

structed for a two-dimensional geometry (appropriate for a fibrous composite) and 

compared their results to analogous bounds by Beran and Silnutzer (16), based on a 

single shape factor, and to the Hashin-Shtrikman bounds (17).  The improvement was 

seen to be quite dramatic and suggests, strongly, the efficacy of incorporating 

more refined geometric information by means of multi-point statistical moments and 

of geometric modelling of the microstructure. 

What was not understood, however, was the relationship between specified values 

of the packing parameters and other, perhaps more fundamental, measures of positional, 

or packing, information. To gain insight into this relationship was one of the tasks 

outlined for the time period of interest in tiiis report. To sec how to proceed, we 

recall that our understanding of the relationship between specified values of the 

IL-i _^^^^H1 
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exact qalcu- .  H 

shape factors and qualitative descriptions of inclusion shapes; e.g., spherical or 

plate-like, etc.; was obtained by comparing the behavior of the bounds containing 

the factors and exact solutions for a two-phase suspension of the desired property 

measure; calculated to order C, where C is the concentration or volume fraction of 

the suspending phase.  It is well known that to this order, in a "well mixed" 

suspension, the effective property measure is independent of any positional informa- 

tion, depending only on inclusion shape information.  (The task was made quite easy 

by the availability of a number of calculations, to order C, in the literature.) 

The obvious suggestion, for gaining insight into the packing parameters, is to 
2 

carry out a similar comparison to order C , since positional information will 
2 

enter the order C... .term.. The. first task, then, is to obtain suitable exact .qalcu- 

lation carried out to order C . This task proves to be one of considerable dif 

ficulty involving, as it does, the solution of a two body problem. A much less 

obvious difficulty, but one that is actually the cause of numerous erroneous results 

scattered throughout the literature, is the need to incorporate some aspects of 

long range interactions along with any short range interactions that are to be 

taken care of by the solution of the two body problem. An attempt to incorporate 

these long range interactions "in a natural manner" (18) resultr in convergence 

difficulties, the nature of which caused considerable confusion.  In any event, at 

present a number of studies regarding this point have appeared including one 

carried out by McCoy and Beran (19) with ARO support, and a  .rarer of calculations 

of effective property measures that are correct to order \     - .^ Available. Un- 

fortunately, none of these results are directly applicable for our purposes due to 

the details of the suspensions for which they were accomplished and the nature of 

the symmetric cell model assumption. Thus, all of the exact calculations are for 

a distribution of equisized spheres, whereas the symmetric cell model requires a dis- 

tribution of sphere sizes. At the end of the grant period, research was still going 

on to incorporate a distribution of sphere sizes into the exact calculations, in 

order to obtain a result that is suitable for the desired comparison*  The prin- 

cipal investigator spent the last part of the time perr.c . ^v ;itu by the grant 
2 

visiting at Cambridge University, where most of the the; r, relative to order C cal- 

culations is being carried out. 

For dynamical problems, several questions can immediately be raised. For ex- 

ample, what is the validity of a dynamical effective modulus theory? Is it proper 

to use the averaged mass density in such a formulation or docs one require an ef- 

fective mass density? Also, what is a properly formulated extended theory -- e.g. 
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should one expect it to incorporate dispersion effects? .... decay effects? These 

questions were all considered in a number of studies carried out, with ARO support, 

some four or five years ago (20-22). During the past two years our interest has 

drifted somewhat from these questions pertaining to the mean field, or the com- 

pletely coherent field as it is termed in the literature of stochastic radiation 

fields. The reason for this is that, unlike for the statical problem, the mean 

field does not tell the entire story in a wave propagation experiment and tells 

less and less of it as the frequency content of the signal increases.  (Actually, 

the mean field would not appear to tell the whole story in a statical experiment. 

For example, one would suspect that fluctuations in the stress and strain fields 

"äbö"irer"t'Herr"mean* values would be an"important input- ttr-g-"tstiiizttr-iheoryr'-'--&• gewera4 ~ • 

formalism for studying these fluctuations has been considered (23).) As an example 

of the information not contained in a mean field theory, we note that it does not 

enable us to predict the flow of energy in a dynamical experiment.  It only con- 

siders the energy that remains in the completely coherent, or as it is sometimes 

referred to, the unscattered field.  In order to make predictions of questions 

pertaining to energy flow, we require a theory expressed in terms of two-point 

moments, defined on the response field.  It is to this problem that we have turned 

our attention. 

While these last mentioned theories have received scant attention in the 

context of a solids problem, there exist fairly well established literatures on 

them in the context of electromagnetic radiation fields, or more to the point, in 

the context of acoustic signals in a fluid. A significant difference between waves 

in solids and waves in fluids is, of course, the presence of more than one propaga- 

tion mode in the former and the possibility of mode conversion due to scattering. 

During the past two years we have considered several aspects of this problem.  In 

one study (24), we considered the development of a "Parabolic Theory of Stress 

Wave Propagation Through Inhomogeneous Linearly Elastic Solids." A parabolic wave 

theory differs from a complete wave theory in allowing propagation only in direc- 

tions of increasing range. Thus, when applicable, it is well suited to numerical 

computations using a range incrementing procedure. We note that the validity of the 

parabolic formalism would appear to be crucial for the development of the random 

scattering theory envisioned.  In the context of this same question, a small effort 

was undertaken to develop experimental capability to study propagation experiments 

involving inhomogeneous medium.  In a second study (25,26), we considered the de- 

velopment of a scattering theory, which is suitable for experiments with the possibility 
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of more than one mode of propagation. Whiic the theory is most directly applicable 

to acoustical waves in waveguides, the significance that it has for the solids is 

this presence of more than one propagation mode. Finally, a further study toward 

developing a theory for describing high frequency coherence experiments in randomly 

inhomogeneous linearly elastic solids is well underway (27). 
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